JOURNAL OF COMPUTATIONAL PHvstcs 22, 28(-290 (1995}

A Comparison of Parallel Programming Models for
Multiblock Flow Computations

M. L. SAwLEY AND J, K. TEGNER

Institint de Machines Hydrauliques et de Mécanique des Fluides, Ecole Polysechnigue Fédérale de Laisanne, CH-1015 Lausanne, Switzertand

Received November 22, 1994; revised April 18, 1995

A study is presonted of the implementation of four different paral-
lel programming models in a code that solves the fluid flow equa-
tions on block structured meshes. Performance results obtained on
a number of distributed-memary paralle! computer systems are
given, in particular, for a 1024 processor Cray T3D system. Using
the appropriate programming model, it is shown that excellent per-
formance scaling can be obtained even for small problem sizes.
The relative merits of each programming model in terms of ease
of use, functionality, and performance are assessed. © 1995
Acedemic Press, Inc.

1. INTRODUCTION

Computational fluid dynamics (CFD) is becoming increas-
ingly employed for the numerical simulation of a wide range
of flow problems of both academic and industrial interest. in
combination with analytical methods and wind tunnel experi-
ments, CFD is potentially an extremnely powerful tool for flow
applications in, for example, the acronautical, aerospace, auto-
molive, and chemical industries. The numerical simulation of
complex three-dimensional flows requires, however, efficient
numerical methods and large computational resources (both in
processing speed and memory). Since the solution of many
complex flows is presently aot accessible via traditional vector
supercomputers, (here has recenily beeo astrong interest within
the CFD community in massively paratlel processing (MPP).

The majority of CEFD methods are based on the resolution
of a set of partial differential equations—such as the Euler
equations for inviscid flow, or the Navier—Stokes equations for
viscous flow—that describe the continuum behaviour of the
fluid. A large number of different studies have investigated the
parallel computation of these flow equations (see, e.g., the
studies described in [1, 2]). These sludies have not only em-
ployed a wide range of different parallel computer systems,
but also a variety of different parallel programming models,

Generally, the choice of programming model has been gov-
erned by the computer system used, for example, the data
paraliel model on SIMD {single instruction, multiple data) com-
pulers, or message passing on distributed-memory MIMD (mul-
tiple instruction, multiple data) systems. Thus previous authors

have almost exclusively presented results obtained using one
parallel programming madel. However, Taced with the task
of developing a large-scale scientific application—such as a
complex 3D flow simulation—flexibility in the choice of the
paralle! programming model is essential [3]. It is therefore of
interest to investigate different programming models presently
available in order to assess and compare their current capabil-
ities.

The goal of the present study is to examine the use of four
different parallel programming models for flow simulations
based on a block-structured mesh. Particular reference is made
to the Cray T3D system, which provides each of these program-
ming models, Four different code implementations have been
considered, with performance results obtained on the Cray T3D
and other distributed-memory MIMD and SIMD computer sys-
tems. This has enabled an assessment of the relative merits of
the different models for numerical flow simufations.

2. PARALLEL PROGRAMMING CONCEPTS

Distributed-memory systems, such as those considered in the
present study, are characterized by non-uniform memory access
(NUMA)}. To obtain high performance on such systems using
a SPMD (single program, multiple data) programming style,
the following three considerations are critical.

Derta distribution. 10 is necessary on distribuled-memory
systems to distinguish between data objects that are shared
among all PEs {pracessing elements) and those that are private
to a PE. Only one copy of shared data objects exists that is
accessible to all PEs and, if the object is an array, may be
distributed across multiple PEs. In contrast, private data cbjects
are not distributed across processors, but instead each PE has
a personal copy of a private object. For some parallel systems
all data objects are implicitly shared (e.g., SIMD computers,
such as the Thinking Machines CM-200 and MasPar MP-1/2)
or implicitly private (e.g., many MIMD computers, such as the
Intel Paragon). For the Cray T3D, compiler directives are used
to distinguish shared and private data objects, The distribution
of shared data across PEs is generally determined by compiler

280

(024-9991/95 $12.00
Copyright © 1995 by Academic Press, inc.
Al rights of reproduction tn any form reserved.

PARALLEL MULTIBLOCK FLOW COMPUTATIONS

directives (e.g., sHareD for Cray, Layout for Thinking Ma-
chines, map for MasPar systems).

Work distribution. In addition to distributing the data
amongst PEs, it is also necessary to specify which of the PEs
will perform the different computational work. For performance
reasons, it is desirable to employ an “*owner computes’’ execu-
tion, with operations performed by the PE whose local memory
contains the data required by the operation. Work distribution
for shared arrays may either be implicitly imposed by the nse
of Fortran 90 style array syntax or, for the Cray T3D, enforced
explicitly using the posHAaRED compiler directive.

Data exchange. In all except “‘embarrassingly paraliel®’
applications, it is necessary to exchange data between PEs at
various times during the computation. For the programmiing
models considered in the present study, this is undertaken in
one of the following three ways:

» global addressing, invelving implicit communication of
shared data by simply addressing the required data,

* message passing, for the explicit communication of pri-
vate data using the PVM (paraliel virtual machine) interface,

+ explicit shared memory, involving low-level explicit
communication based on the system’s shared memory (avail-
able on the Cray T3D, using the SHMEM library).

In order to perform paralle] computations, a choice must be
made for each of the above three considerations. An appropriate
designation of data objects as private or shared, and a suitable
distribution across PEs, together with a corresponding work
distribution, is essential to maximize the number of operational
PEs and to minimize the transfer of data between PEs. In
addition, for communication-dominated applications an effi-
cient means for data exchange is essential.

The choice of the paralle] programming model is, however,
often governed not solely by performance considerations, but
also by functionality and ease of implementation. Often the
choice involves a trade-off between the programming conve-
nience of implicit styles and the performance advantage of
explicit styles. Figure 1 presents an overview of different pro-
gramming models considered in the present study, namely:

* data parallel (using array syntax)

¢ message passing {using the PVM library)

= work sharing (using the DOSHARED compiler directive)
« explicit shared memory (using the SHMEM library).

Code portability can also be an important facior in the choice
of paralle]l programming model. The data parallel model has
been traditionally employed on SIMD computers, such as the
Thinking Machines CM-200 and MasPar MP-1/2 systems. Mes-
sage passing is employed on a wide range of distributed-mem-
ory MIMD systems, as well as on networked parallel sysiems
such as workstation clusters. Work sharing is compatible with
certain restrictions with shared-memory multiprocessors such

281

PRIVATE . SHARED
MEMORY MEMORY
implicit '
it}
o
p=
@O
=
[54
b
wl
g
o
o
axplicit
explicit —= implicit
Data / Work Distribution
data parallel wark sharing
message passing explicit shared memory
FIG. 1. QOverview of the programming fiodels employed in the present
study.

as the Cray Y-MP and C90 systems, but also with a lmited
number of MPP systems. The explicit shared memory model
is specific to the Cray T3D and is not yet available on other
parallel computer systems.

3. PARALLEL MULTIBLOCK METHODS

Multiblock methods are based on a subdivision of the flow
domain info a number of subdomains, with each subdomain
being covered by a block consisting of a structured submesh.
Subdomains can be interconnected in an unstructured manner,
thus block-structured meshes provide a measure of flexibility
for complex flow geometries. However, since each submesh
has a structured nature, multiblock methods retain many of the
advantages of methods based on structured meshes. Multiblock
methods can be viewed as intermediate between methods based
on fully structured or fully unstructured meshes.

Paratlel techniques for the CFD methods cousidered in the
present study are based on the computation of the flow values
at different mesh peints on different processors. Two levels of
parallelism can be naturally exploited for block structured
meshes:

* mesh point level, with the computations for each mesh
point (orcell) being performed by a different (virtual) processor.
Such a fine-grain parallelism is well suited to the data parallel
programming model, for which different processors undertake
the necessary computations of different mesh points in a syp-
chronous manner. Data parallel techniques have been employed
in recent years for CFD applications by a number of authors
on SIMD computers (see, e.g., {4-6]).

* subdomain level, with each subdomain being assigned to

282

a different processor. This coarse-grain parallelism has been
exploited in CFD calculations using either shared-memory
multiproeessors [3, 7] or distributed-memory MIMD computers
[7, 8].

The implementation of the four different programming mod-
els has been studied using different versions of a CFD code
that employs block structured meshes. This code solves the
time-dependent Euler equations for inviscid, compressible flow
in two-dimensional geometries. The Euler equations can be
written in a conservative law form in an (x, v} cartesian coordi-
nate system as

hij d 0
— -+ — -+ — =
% w I F(w) 2 G{w) = (,
where
p pu pu
put p 4 p pHD
W= . Flw)= , G(w) = 2
ov puv pot + p
PE. u(pE + p) v(pE + p)

Here, p is the mass density, p is the pressure, £ is the total
energy, and (u, v) are the (x, y) components of the flow velocity.
The above system of equaticns is closed via the equation of
state,

p = ply — DIE —~ K + v9),

where v is the ratio of specific heats (y = 1.4).

The Euler equations are discretized in space using a cell-
ceniered, finite volume formulation with ceniral differences.
For the flow problems considered in the present study, the
required steady state is obtained as a converged solution of the
tiime-dependent equations. An explicit five-stage Runge—Kuita
scheme is employed for the time integration, using local (spa-
tially dependent) time stepping to accelerate convergence.

Different code versions have been developed that employ
the four different parallel programming models (Fig. 2). All
code versions have the same basic subroutine structure (Fig. 3).
Each time iteration of the discretized flow equaticns consists of:

* communication phase, in which the flow values at the
subdomain mterfaces are exchanged (block connectivity),

* boundary condition phase, during which the flow values
at the edges of the computational domain are imposed,

* computation phase, during which the flow solution in each
subdomain is updated.

For the present cell-centered numerical method, it has been
found adequate to perform the block connectivity only once

SAWLEY AND TEGNER

private anays

shared arrays e Jata exchange

FIG. 2. Schematic diagrams illustrating for four processors the different
paratiel moliiblock implementations considered: {a) data paraliel; (b) message
passing: (c) work sharing; and (b), (d) explicit shared memory. The horizontal
ditection indicates the different processors, while the vertical direction repre-
sents subroutine layers.

each time iteration, while the boundary conditions are imposed
during the first two stages of the Runge—Kutta scheme.

Each 50 iterations, the following global quantities are com-
puted:

* global time step, equal to the minimum of the local time
steps in each subdomain (this value is actually not required if
locat time stepping is employed),

* maximum and rms residuals, to determine if the solution
has converged to the required accuracy.

4. IMPLEMENTATIONS AND PERFORMANCE RESULTS

The code versions described in this paper have been devel-
oped on different parallel computer systems. Unless otherwise
stated, minor specific modifications have been made in order
to obtain equivalent levels of optimization on the different
systems. All code versions are written entirely in Fortran with-
out the use of low-level languages (except for interprocessor
communication). The computations on all computer systems
presented here were performed using 64-bit arithmetic, with
perforimance resulis given for the eniire code, excluding input/
output and initialization.

4.1. Data Parallel

4.1.1. Implementation

For this implementation, a serial data-paralle] multiblock
method [9] 15 employed; each of the blocks are freated in a
sequential manner, the solution in each block being computed
using fine-grain mesh-point level parallelism.

PARALLEL MULTIBLOCK FLOW COMPUTATIONS 283

PEQ PE 1 PE 2

raceive receive
————— initial values -—— == nitial values
fram PE O from PE O

read and send
initial values

receive regeive
_————— mesh values - — — = — | meshvalues
trom PE O from PE O

read and send
mesh values

black
connectivity

block
connectivity

block
connectivity

boundary
conditions

Dboundary
conditions

houndary
conditions

advance
computalion
ane time step

advance
computation
one time step

advance
computation
one time step

compute
global time step

compute
global time step

compute
global time step

- _————

compute
global resigual

compuie
global residual

compute
giobai residuai

cantinue
iteration?

continue
iteration?

contihug
iteration?

send solution
toPED

send solution
=TT * tereo

receive
sclution

write or display
solution

FIG. 3. Flow diagram for the paraliel multibiock code. interprocessor communication, denoted by dashed lines, is undertaken either explicitly or implicitdy
dependiing on the programming model considered.

284

This code version contains three types of data objects:

* global arrays containing the mesh coordinates and flow
values for the entire flow region. These arrays are four-dimen-
sional: block number, coordinate or value number, and f and §
values of the mesh.

* local arrays containing the mesh coordinates, flow values,
and various work quantities. These arrays are two-dimensional:
the { and j values of the mesh. The local arrays contain an
additional exterior layer of ‘‘ghost cells” to provide data local-
ity and to facilitate the application of boundary conditions.

+ scalar quantities, such as the freestream pressure.
q P

For the serial data-paraliel multiblock method, the variable
values for one block are copied from the global arrays to the
corresponding local arrays, and the computation is performed
using the local arrays in a manner similar to that for a2 single
block mesh (5, 6]. The updated local array values are then
returned to the global arrays. Block connectivity is achieved
using the global arrays. After the global array elements for one
block are updated, the other blocks are treated in a sequen-
tial manner,

All scalar quantities are treated as private variables. Both
global and local arrays are treated as shared and are distributed
s0 that the values of all quantities at the same mesh cell are
stored in the same PE memory (that is, sLock distribution for

Cray, NEws for Thinking Machines, xprrs/vBrrs for MasPar

systems for the { and j values of the mesh or flow quantities,
degenerate distribution for any other dimensions). This distribu-
tiont optimizes the locality of the data on the availabte PEs and,
hence, minimizes data transfer. It should be noted that both the
computation of the flow in each subdomain and the block
connectivity involves the exchange of data between different
PE memory, which is undertaken in an implicit fashion using
the globally addressable memory (Fig. 2(a)).

The data parallel code version is written entirely in Fortran
90 style, For a local approximation method such as the finite
volume method, the computationally intensive sections of the
code involve the addition and subtraction of neighbouring ele-
ments according to a stencil determined by the spatial discretiza-
tion employed. This can be conveniently undertaken using the
standard csHIFT intrinsic function. Since intrinsic functions for
shared arrays are currently unavailable for computations on
the Cray T3D, these were replaced by the equivalent array
assignment statements.

Finally, it is noted that the data parallel model can be imple-
mented on the Cray T3D using FORTRAN 77 with DOSHARED
directives preceding the do-loops for explicit work distribution
[10]. While this method has not been employed in the present
study, it is anticipated that it would lead to a performance
similar 1o that obtained vsing array syntax.

4.1.2. Performance Resulis

As an application, we consider Mach 1.865 supersonic flow
through an air intake (Fig. 4). This flow case has been studied

SAWLEY AND TEGNER

by the French aircraft engine manufacturer Snecma in the devei-
opment of a powerplant for the replacement of the Concorde
supersonic aircraft {11]. A computational mesh consisting of
eight blocks each with 15,376 mesh cells was employed.

Performance resunlts obtained using the data parallel code
version on different parallel computer systems are given in Fig.
5. These results show that for the SIMD systems (MP-1/2 and
CM-200) the performance scales approximately linearly with
the number of processors; this is to be expected since for the
flow problem considered, the computational arrays have always
at least as many elements as there are processors, The perfor-
mance of the Cray T3D system is also linear up to about 128
PEs; however, further doubling of the number of PEs resuits
in significantly less than a twofold increase in performance.
The performance scaling of the CM-5 system departs consider-
ably from linear behaviour, even for a relatively small number
of processors. In addition, while the largest configurations of
the two MIMD systems have peak performances far superior
to those of the SIMD systems, the maximum performance mea-
sured for each of the systems differs by only a factor of 2.

There are several potential explanations for the relatively
poor performance of the MIMD systems compared to the SIMD
systems. First, data paralle! computations are communication
intensive and require a high nearest-neighbour communication
bandwidth. Since the SIMD systems can only be programmed
using the data parallel model, they have specially designed
hardware for this function. Second, no additional optimization
has been performed for the MIMD systems. [n particular, on
the Cray T3D system the compiler constrains the global array
dimensions (except the last) to be a power-of-two; no array
padding has been implemented to avoid potential cache thrash-
ing. Third, the computational mesh employed to solve this
2D fiow problem, while adequate to resolve the physical flow
features, is relatively small. Since data parallel code perfor-
mance has been shown to increase significantly with problem
size [0], it is to be expected that the MIMD systems would
provide substantially higher performance levels for large-scale
3D viscous flow computations. Finally, it is important to note
that the results obtained on the Cray T3D and CM-5 systems
are based on preliminary compiler versions, and are conse-
quently not necessarily representative of the performance avail-
able using future compiler releases. In particular, the Cray T3D
compiler presently treats many array element references as
remote, even though the data is stored in local memory; this
leads to a significant degradation in petformance, which should
be overcome in a subsequent compiler release.

4.2, Message Passing

4.2.1. Implementation

The message-passing code version employs a coarse-grain
subdomain level parallelism. The computations for different
blocks are performed on different processors; for the present
implementation only one block is assigned to each processor.

PARALLEL MULTIBLOCK FLOW COMPUTATIONS

285

FIG. 4. Pressure contours for supersonic flow through an air intake.

This code version contains only two types of data objects:
local arrays (containing the mesh coordinates and flow values)
and scalar quantities. Al the data are treated as private, with
data contained in a different PE memory accessible only via
message passing (Fig. 2(b)). The message-passing code version
is written entirely in FORTRAN 77.

Block connectivity is undertaken using standard PVM library
routines for necessary tasks such as data sending (pvmfsend)
and receiving (pvmfrecv). The use of blocking receives en-
sures that the update of the flow solution in a subdomain does
not proceed before the appropriate values at the edge of the
subdomain have been imposed; this imposes block-to-block
synchronization between the different subdomains. No other
synchronization (either explicit or implicit) is employed at each
time step. However, the updating of the global time step and
residuals each 50 time steps imposes a global synchronization,

linear -
scaling .~
wo O

Performance [MFlop/s]

sl Lt vk g el s 1 1l -

1 10 100 1000 10000

Number of processors

FIG. 5. Performance of the data paralle]l code version as a function of the
number-of processors on different MIMD: Cray T3D (O}, Thinking Machines
CM-5 ([); and SIMD: Thinking Machines CM-200 (<), MasPar MP-1 {(A),
and MP-2 (V) paralle] computer systems.

This means that between these global updates all PEs are not
necessarily involved in the same code phase, providing the
possibility for some overlap between computation and commu-
nication. This is particularly important for imposing the bound-
ary conditions at physical domain edges in parallel with block
connectivity at subdomain interfaces.

The use of standard PVM provides a high level of portability.
The same code, with only minor modifications, has been run
on a Cray T3D, an Intel Paragon, two different homogeneous
workstation clusters, and a heterogeneous networked computer
system consisting of a Cray Y-MP and different workstations
[12]. Nevertheless, due to the poor performance of the PYM
code on the Intel Paragon, the manufacturer-specific NX mes-
sage-passing library has been employed to obtain the perfor-
mance results presented for this computer system.

422, Performance Results

Computations have been undertaken for different parallel
computer systems for Mach 2 supersonic flow through a duct
(Fig. 6). A computational mesh comprised of 43,008 mesh cells
has been employed (chosen to fit into a local memory of 16
MB). This mesh has been subdivided into a number of equal-
sized submeshes, corresponding to the number of processors
used in the parallel computation.

The performance results obtained using the message-passing
code version on the different parallel systems is presented in
Fig. 7. For each of the systems considered, the performance
can be seen to scale approximately linearly with the number
of processors. This indicates that despite the relatively small
mesh size—and hence, relatively large ratio of required com-
munication to computation—the processor floating-point per-
formance, and not the commaunication overhead, is the limiting
factor for these computations. (Indeed, for each of the parallel
systems considered in Fig. 7, the measured single PE perfor-
mance is significantly less than peak processor performance.

286

SAWLEY AND TEGNER

FIG. 6. Pressure centours for supersonic flow through a duct.

This is associated with the low level of data cache reuse by
the present code for these cache-based RISC processors.) Tt
should be noted, however, that the maximum number of proces-
sors availabie in the workstation clusters was significantly less
than for the integrated MPP systems. For more than 16 work-
stations, communication overhead is expected to become in-
creasingly dominant, due to the inherent serial (or interleaved)
nature of the data traffic on the interconnect network of these
workstation clusters.

A more detailed assessment of the relative importance of
computation and communication time for the Cray T3D is
provided by Fig. 8. This plot shows the time spent performing
the computation and communication sections of the code. As
the number of PEs increases, the computation time decreases
linearly since the same problem size is computed in parallel.
The block connectivity overhead also decreases slightly, due
to the reduction in the size of the blocks and hence the amount
of data exchanged between subdomains. The calculation of
the global time step and residuals uses the same hypercube
algorithm. However, the time required to compute the global
time step is much higher, since it includes the necessary syn-
chronization time between PEs (as discussed above). This syn-
chronization overhead becomes increasingly important as the

number of PEs increases and, for a calculation using 1024 PEs,
is greater than the time required for actual data exchange.

It is important to note that the computational mesh employed
for these compuiations is relatively small. Indeed, for a 1024
PE system (with local memory of 64 MB/PE) it is estimated
that only 0.02% of the tota! distributed memory is employed!
To examine the performance of the Cray T3D for larger problem
sizes, the same flow problem was considered but with a compu-
tational mesh that increases linearly in size with the number
of PEs employed (that is, with 43,008 mesh points per PE).
The performance measured for this scaled problem is given in
Fig. 9. As expected, the performance scales linearly with the
number of PEs over the entire range considered. Figure 10
shows that for the scaled problem, the computation time remains
approximately constant (since the computational work per PE
remains constant} and is always over two orders of magnitude
greater than the communication time.

4.3. Work Sharing
4.3.1. Implementation

The work-sharing code version, which also employs a coarse-
grain subdomain leve! parallelism, was implemented on the

10000
w
& o
T8
=
a
s 100
<o
=
[+
£
(=]
€ 1
@
£
1] 1 1 1 1

Q Cray TaD

P = 12,99 p0.994

=) Intel Paragon

!

1

1

1

1

a
|

= 457 p1o24

v DEC 3000/400 AXP {FDDI)

P = 1440p 1008

a HMP 9000/720 (Ethernat)

1 4 18 64 256

Number of processors, p

P = 10.80p 2907
1024

FIG. 7. Performance of the message-passing code version as a function of the number of processors on different MIMD parallel computer systems and

workstation chisters,

PARALLEL MULTIBLOCK FL.OW COMPUTATIONS

@
5
a
2
<o
(e}
~
@
o
@D
E
|.-
10*4 a1 [l [l |l
1 10 10 00
Number of PEs

F1G. 8. Time reguired on the Cray T3D for 100 iterations of the message-
passing code version using a coustant mesh size (O computation; O block
connectivity; A global time step; V' global tesidual).

Cray T3D. This version contains global arrays, local arrays,
and scalar quantities; however, in contrast to the data parallel
version the local arrays are declared private. In fact, the work-
sharing version can be seen to be intermediate between the
data parallel and message-passing versions, comprised of the
upper subroutine layers of the first and the lower layers of the
second (Fig. 2(c)). The necessary communication between PEs
is achieved implicitly via the shared global arrays.

The global arrays are distributed using BLock distribution
for the block number dimension and degenerate distribution
for the other dimenstons. The transition from the shared global
arrays to the private local arrays is achieved using shared-to-
private coercion [10). The computationally intensive section

il
r
;E 1P .
Q
(%3
[
<
E 102
=}
=
o
o
1¢?

Number of PEs

FI1G.9. Performance on the Cray T3D of the message-passing code version
for constant {{7) and scaled {{) computational mesh sizes.

287
0~ 0—0—0—0~0—0~0—C—0
102 b
=, i
W
5
ﬁ T ,D.-D—-D—U'D--D-—D—D
o a- .)
= b
3 I poa B
e 2 fo- Y
8 v\.v-‘-v---‘?---v"-"?--vv
E | q/—-V“‘V'
= A
10t B L | i J
k © 0 1000
Number of PEs

FI1G. 10, Time required on the Cray T3D for 100 iterations of the message-
passing code version using a scaled mesh size (O computation; [J block
conrectivity; A giobal tithe step; V global residual).

of the code uses the private arrays to enhance performance.
Furthermore, additional private arrays are declared having inde-
pendent dimensioning to allow array padding to avoid potential
cache thrashing. This does not entail the need for additional
storage compared to the above-mentioned code versions since
in all versions at each time step the flow values at the previous
time step must be stored.

4.3.2. Performance Results

The computationally intensive section of the work-sharing
version is performed using the same subroutines as for the
message-passing code version. However, the use of the global

1ot
Q
g
i 10°%
2,
@
Q
f
[
E 12
=]
=
1)
a.
10! T 5 i 1
1 10 10 1000
Number of PEs

FIG. 11, Performance on the Cray T3D of the work-sharing (Q), explicit
shared memory (4), and message-passing ([J) code versions for a constant
mesh size,

288

arrays for communication adds a global synchronization each
time step (at the end of the DOsHARED loop). The consequence
of this synchronization can be seen in Fig. 11, which compares
the measured performance of the work-sharing version with that
of the message-passing version for the constant computational
mesh size (43,008 mesh cells). From this figure it can be ob-
served that the performance obtained using the work-sharing
version is approximately 20% lower than with the message-
passing version.

4.4. Explicit Shared Memory
4.4.1. Implementation

The shared memory access (SHMEM) library [13] consists
of manufacturer-specific routines that allow low-level explicit
data communication via the shared memory of the Cray T3D.
In particular, the shmem_put routine can be used for the fast
transfer of data from a local address 10 a remote address on a
different PE. For point-to-point transfers, shmem_put has a
latency over 30 times smaller and a bandwidth over 3 times
larger than corresponding PVM routines [14).

The SHMEM library can be used in a straightforward manner
for a multiblock code based on coarse-grain subdomain level
parallelism. This can be achieved either by replacing the PVM
routine calls in the message-passing version {Fig. 2(b)), or by
replacing the global array addressing in the work-sharing ver-
sion (Fig. 2(d)).

Since the shmem_put routine writes directly into the mem-
ory of another PE, it is necessary before the transferred data
is used by the remote PE to ensure:

* synchronization, which can be achieved via the use’ of an
explicit global barrier,

* cache coherency, guaranieed by explicitly flushing the
data cache.

4.4.2. Performance Results

A preliminary stody has been undertaken by implementing
shmem_put routine calls into the message-passing version.
The use of a barrier for global synchronization when performing
the block connectivity was found to degrade performance. This
can be attributed to the fact that the increase in synchronization
overhead due to the addition of the barrier outweighs the advan-
tage of a shorter communication time. This problem was over-
come vsing PE-10-PE synchronization, which is available in the
SHMEM library (shmem_wait). This resulted in a significant
reduction in the time required for block connectivity compared
to the message-passing code version, especially when a large
number of PEs were employed (Fig. 12). However, for the
computational mesh with 43,008 mesh cells the global synchro-
nization (imposed in the calculation of the global time step)
exceeded the communication time required for block connectiv-
ity when more than 100 PEs were used. Thus only a slight

SAWLEY AND TEGNER

Time per 100 iterations [s]

0

Number of PEs

FIG. 12. Time required on the Cray T3D for 100 iterations of the explicit
shared memory version using a constant mesh size (O computation; O block
connectivity; /s global time step; V global residual),

increase in the overall computational performance was mea-
sured (Fig. 11).

5. COMPARISON OF PROGRAMMING MODELS

The data parallel model is the most implicit programming
maodel employed in the present study. This model has the advan-
tage that much of the burden of parallel prograntming is relieved
from the programmer. In particalar, no additional partitioning
of the data is required to distribute them amongst the processors.
This simplifies the preprocessing task of mesh generation,
which for complex geometries is already sufficiently complex
and time-consuming. In addition, since during each time step
the flow in different subdomains is computed in a sequential
manner, load balancing between processors can be achieved in
a straightforward manner [9]. The performance results obtained
in the present smudy confirm that the data parallel model can
be used efficiently on SIMD systems for multiblock flow com-
putations. However, this model places a large burden on the
compiler, especially for distributed-memory MIMD computer
systems. This is reflected in the performance of the Cray T3D
system, which is substantially inferior to that obtained using
the other programming models. In addition, the data parallel
model can be overly restrictive, for example, in the appiication
of boundary conditions. Nevertheless, the availability of the
data paraliel model on MIMD systems enabies the straightfor-
ward porting of codes developed on SIMD computer systems.

Message passing provides a flexible model that places a large
amount of control—and responsibility—in the hands of the
programiner. This enables high performance levels to be ob-
tained. However, such flexibility is not always required for the
SPMD programming style. Indeed, the present message-passing
implementation of the muitiblock code uses only a small frac-
tion of the functionality available in the PVM library. For large-

PARALLEL MULTIBLOCK FLOW COMPUTATIONS

scale application codes, the message-passing model is often
considered to be too explicit and requires careful attention to
avoid programming etrors. In addition, the explicit distribution
of data to the PEs often necessitates further artificial subdivision
of subdomains and can pose difficulty in load balancing. Indeed,
it is not always possible before runtime to determine an appro-
priate work distribution since the ‘‘useful work’ to be per-
formed is not necessarly proportional to the number of mesh
cells. (For example, the computation of the flow cases consid-
ered in the present study entails for the upstream blocks merely
a recalculation each time step of the freestream flow conditions.)
Nevertheless, the message-passing programming model—and,
in particular, PYM—is used on a large number of integrated
and networked paralle! computers, allowing the direct porting
of cades between these systems.

The work-sharing programming model appears to be a suit-
able compromise between the above two models. It retains the
ease of use of the globally addressable memory, while avoiding
the excessive flexibility of a more explicit model. While the
present study has shown that there is a performance price to
pay on the Cray T3D, this appears to be minimal and presum-
ably warranted for a number of applications. However, only
very few distributed-memory parallel computer systems cur-
rently offer a programming mode! based on a globally ad-
dressable memory, restricting portability amongst MPP sys-
tems. In addition, the work-sharing model considered for
the present multiblock code uses the same subdomain level
parallelism as the message-passing model and thus necessi-
tates the sarne availability of suitable meshes for optimal
performance.

Finally, a low-level communication library can be employed
on the Cray T3D for the explicit shared memory model in order
to obtatn maximuim performance. However, the present study
indicates that due to its Jow-level nature it must be used in an
appropriate manner. In view of the modest performance gains
obtained, the use of this model appears unwarranted for flow
simulations based on the numerical method employed in the
present study. Nevertheless, the implementation of other numer-
ical methods that are more communication intensive may bene-
fit significantly from this programming model.

6. CONCLUSION

The present study has illustrated different implementations
of a multiblock code using four different programming models.
These models differ in the distribution of dara and work
to the PEs, the exchange of data between PEs, and the
synchronization between PEs. It has been seen that these
issues are important for high performance on a distributed-
memory paralle! system.

The availability of each of these different programming mod-
¢ls on the Cray T3D results in an increase in programming
flexibility over that available on other MPP systems. This en-

289

hanced flexibility provides the application programmer with
the choice of the appropriate parallel programming methodol-
ogy for the computational problem at hand and simplifies the
porting of existing codes from other paraliel computer systems.
In fact, a svitable combination of the different programming
models may provide the most appropriate means fo solve a
given computational problem,

An assessment of the performance of each model has been
presented for two-dimensional inviscid flow computations.
The flow cases considered have generally necessitated only a
relatively small number of mesh cells to resolve the flow
features. As the complexity of the flow problem increases, the
size of the computational mesh also increases, leading to a
decrease in the communication-to-computation ratio required
in obtaining the flow solution on a given number of proces-
sors. The present results indicate that for CFD computations
based on block-structured meshes the performance bottleneck
is generally not interprocessor communication, but single PE
performance (that is, a memory-to-CPU communication bot-
tleneck).

Finally, while the present study has considered CFD applica-
iions, the appropriate choice of a parallel programming model
is of general concern for computational physics and engi-
neering. It is expected that the results of this programming
model evaluation, in terms of ease of use, functionality, and
performance, are therefore relevant to a large number of applica-
tion areas.

ACKNOWLEDGMENTS

The authors thank Magnus Bergman (KTH Stockholm), Tom MacDonald,
Michel Roche (Cray Research}, Roch Bourbonnais (TMC) for their aid in the
present study. Zdenek Sekera and Peter Corbett are acknowledged for their
assistance in running ¢he codes on the 1024 PE Cray T3D and workstation
clusters. Access to parallel computer systems at the AHPCRC University of
Minnesota, Cray Research Inc., ETH Zurich, IPG Paris, KTH Stockhoim,
MasPar Computer Corp., and the University of Bergen is also gratefuily ac-
knowiedged. This study was supported by the Fonds National Suisse, by the
Cray Research—EPFL Paraltel Application Technology Program, and by a
coniract between the U.S. Army Research Office and the University of Minne-
sota for the Army High Performance Computing Research Center.

REFERENCES

1. H. D. Simon (Ed.}, Parallel Computarional Fluid Dynamics: fmplementa-
ticees and Results (MIT Press, Cambridge, MA, 1992).

2. R. B. Pelz, A. Ecer, and J. Hiuser (Eds.), Parallel Computational Fluid
Dynamics '92 (North-Holland, Amsterdam, 1993).

3. K.J. M. Moriarty, T. Trappenberg, and C. Rebbi, Comput. Phys. Comniun.
81, 153 (1994).

4. P. Olsson and S. L. Johnsson, Paraliel Compus. 14, 1 (1990).

5. M. L. Sawley, F. Perrel, C. M. Bergman, and i. Persson, EPFL Supercom-
put. Rev, 4, 2 (1992),

6. M. L. Sawley and C. M. Bergman, Parallel Compur. 20, 363 (1994).

. €. Mensink and H. Deconinck, *‘A 2D Parallel Multiblock Navier-Stokes
Solver with Applications on Shared- and Distributed-Memory Machines,”

-1

290

in Computational Fluid Dynamics '92, edited by Ch. Hirsch, J. Périaux,

and W, Kordulla, Vol. 2, p. 913, (Elsevier, Amsterdam, 1992).

. J. Hiuser and R. Williams, Int. J. Numer. Methods Fluids 14, 51

(1992).

. M. L. Sawley and J. K. Tegnér, Int. J. Numer. Methods Fluids 19, 707

(19%4),

. D. M. Pase, T. MacDonald, and A. Meltzer, MPP Fortran Progamming

Model (Cray Research Inc., 1994).

SAWLEY AND TEGNER

11. G. Freskos and O. Penanhoat, ASME Paper 92-GT-206, 1992 (unpub-
lished).

12. C. M. Bergman and M. L. Sawley, EPFL Supercomput. Rev. 5,10 (1993).

13. R. Barriuso and A. Knies, SHMEM User's Guide for Fortran (Cray Re-
search Inc., 1994).

14, R. Nurnrich, P. L. Springer, and J. C. Peterson, ‘‘Measurement of Commu-

nication Rates on the Cray T3D Interprocessor Network,”” in Proceedings,
HPCN Europe 94, Munich, April, 1994,

